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Let A ⊆ R be nonempty, f : A→ R, and c ∈ R be a cluster point of A.

1. Suppose f(xn) converges in R whenever (xn) is a sequence in A\{c} converging to
c. Show that there exists l ∈ R such that f(xn) converges to l whenever (xn) is
a sequence in A\{c} converging to c. Hence, by virtue of definition of limits for
functions, show that limx→c f(x) = l.

Proof. • We first prove that for any sequences (xn), (yn) with (xn), (yn) ⊆ A\{c},
(xn)→ c, (yn)→ c, we have

lim
n→∞

f(xn) = lim
n→∞

f(yn)

Indeed, let (xn), (yn) as above. By assumption, f(xn)→ l, f(yn)→ l′ for some
l, l′ ∈ R. We would like to show that l = l′. To this end, we construct a new
sequence (zn) as:

(zn) := (x1, y1, x2, y2, . . . , xn, yn, . . . )

Then we have (zn) ⊆ A\{c}, and that (zn) → c. By assumption again, we
have f(zn) → l′′ for some l′′ ∈ R. But by construction, (xn) is a subsequence
of (zn), whence f(xn) is a subsequence of f(zn). Since f(zn) → l′′, we must
have f(xn)→ l′′. Hence l = l′′.

Similarly, l′ = l′′. This gives l = l′.

• We pick a fixed sequence (an) ⊆ A\{c} converging to c. The existence of
such sequence is guaranteed by the assumption that c is a cluster point of
A. Then there exists l ∈ R with limn→∞ f(an) = l. By the above claim,
limn→∞ f(xn) = l for any (xn) ⊆ A\{c} converging to c.

• Lastly we show that limx→c f(x) = l.

Suppose not. Then there exists ε0 > 0 such that for any δ > 0, there exists
x ∈ A with 0 < |x − c| < δ such that |f(x) − l| ≥ ε0. In particular, for each
n ∈ N, we take δn := 1

n
> 0 (or 689

n1997 , 1
2047n

if you like, as long as it converges
to 0 and strictly positive), and xn ∈ A be such that 0 < |xn − c| < δn and
|f(xn) − l| ≥ ε0. Since δn → 0, by squeeze law, we have xn → c. In this way
we obtain a sequence (xn) ⊆ A\{c} with xn → c. By what we have proved
just now, limn→∞ f(xn) = l. Hence for ε := ε0 > 0, there exists N ∈ N such
that for all n ≥ N , |f(xn) − l| < ε0. This is a contradiction to our choice of
xn. Therefore the contrapositive is true, i.e. limx→c f(x) = l.
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2. Suppose that for any ε > 0 there exists δ > 0 such that whenever x, x′ ∈ A\{c}
with |x− c| < δ, |x′ − c| < δ, we have

|f(x)− f(x′)| < ε.

Show that limx→c f(x) exists.

Proof. We will use the criterion in Question 1, i.e. we want to show that f(xn)
converges in R whenever (xn) is a sequence in A\{c} converging to c.

Let (xn) be a sequence in A\{c} converging to c. Let ε > 0. By assumption, there
exists δ > 0 such that whenever x, x′ ∈ A\{c} with |x− c| < δ, |x′− c| < δ, we have

|f(x)− f(x′)| < ε. (∗)

Since (xn) → c, there exists N ∈ N such that for n ≥ N , |xn − c| < δ, and that
xn 6= c. Then if n,m ≥ N , we have 0 < |xn − c| < δ, 0 < |xm − c| < δ. By (*),
|f(xn) − f(xm)| < ε. This shows that f(xn) is a Cauchy sequence. By Cauchy
criterion of sequences, f(xn) converges in R. By Question 1, there exists l ∈ R such
that limx→c f(x) = l.
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3. Let (xn) be a sequence of real numbers. Define

sn := x1 + x2 + · · ·+ xn

s′n := |x1|+ |x2|+ · · ·+ |xn|

Show that if (s′n) converges to a real number, then so is (sn).

Proof. We will show that (sn) is a Cauchy sequence in R. Let ε > 0. Since (s′n) is
convergent, (s′n) is Cauchy. Then there exists N ∈ N such that for n > m ≥ N, we
have |s′n − s′m| < ε. Thus∣∣|xm+1|+ |xm+2|+ · · ·+ |xn|

∣∣ < ε

By triangle inequality, we have:

|sn − sm| = |xm+1 + xm+2 + · · ·+ xn| ≤ |xm+1|+ |xm+2|+ · · ·+ |xn| < ε

This shows that (sn) is Cauchy in R. By Cauchy criterion, (sn) is convergent in
R.
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4. Let (xn) be a sequence which is not Cauchy. Show that there is an ε > 0 such that:

(a) For any N ∈ N there exists N ′ ∈ N with N ′ > N such that |xN − xN ′ | ≥ ε.

(b) There is a subsequence (xnk
) of (xn) such that |xnk

− xnk+1
| ≥ ε for all k ∈ N.

Proof. (a) We will prove by contradiction. Suppose for any ε > 0, there is N ∈ N
such that for any n ∈ N with n > N , we have |xN −xn| < ε. Taking m,n > N ,
we have

|xm − xn| ≤ |xm − xN |+ |xn − xN | < 2ε

This shows that (xn) is Cauchy, which is a contradiction. Therefore there is
an ε > 0 such that for any N ∈ N there exists N ′ ∈ N with N ′ > N such that
|xN − xN ′| ≥ ε.

(b) We will construct (xnk
) inductively: Let ε > 0 be as in (a).

Let N = 1. Then there exists N1 ∈ N with N1 > 1 such that

|x1 − xN1| ≥ ε.

Let N = N1 ∈ N. Then there exists N2 ∈ N with N2 > N1 such that

|xN2 − xN1| ≥ ε.

Let N = N2 ∈ N. Then there exists N3 ∈ N with N3 > N2 such that

|xN3 − xN2| ≥ ε.

Inductively, we obtain in this fashion a subsequence (xnk
) such that

|xNk+1
− xNk

| ≥ ε,

for any k ∈ N. Therefore the sequence (xNk
) is what we want (After changing

the notations)
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